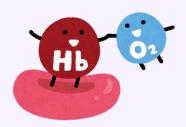
FLUID MANAGEMENT FACTSHEET

Body water compartments

- Intracellular fluid: 2/3 of TBW Extracellular fluid: 1/3 of TBW
 - Intravascular (plasma): 1/4 of ECF
 - o Extravascular (interstitial fluid): 3/4 of ECF

Body Fluid Compartments Total Body Water (TBW) Intracellular fluid (2/3 of TBW) Extracellular fluid (1/3 of TBW) Interstitial fluid (3/4 of extracellular fluid)

Electrolyte physiology


Primary ICF cation: K+ Primary ECF cation: Na+

Fluid & electrolyte regulation

- Volume regulation
 - Antidiuretic hormone
 - Renin-angiotensin-aldosterone system
 - Baroreceptors in carotid arteries and aorta
 - Stretch receptors in atrium and juxtaglomerular apparatus
 - Cortisol
- Plasma osmolality regulation

 - Central and peripheral osmoreceptors
- Sodium concentration regulation
 - Renin-angiotensin-aldosterone system
 - Macula densa of juxtaglomerular apparatus

The aim of maintenance of fluid, electrolytes, acid-base balance and blood volume Final goal: delivery of adequate O2 to tissues

Assessment of fluid status

- · Input and output chart
- Blood pressure: supine and standing
- Heart rate
- Skin turgor and capillary refill
- Serum electrolytes / osmolarity
- Mental status
- Central venous pressure (normal 4-8 mmHg)

Perioperative fluid requirements

The following factors must be taken into account:

1. Maintenance fluid

Insensible losses e.g. evaporation of water from respiratory tract, sweat, faeces, urinary excretion.

Occurs continually.

- 4 ml/kg/hr for first 10kg of body weight
- 2 ml/kg/hr for second 10kg of body weight
- 1 ml/kg/hr for subsequent body weight

2. NPO and other deficits

- NPO deficit = number of hrs NPO x maintenance fluid requirement
- Bowel prep = may result in up to 1L fluid loss
- Measurable fluid losses e.g. NG suctioning, vomiting, ostomy output, biliary fistula and tube

3. Third space losses

Isotonic transfer of ECF from functional body fluid compartments to non-functional compartments.

Depends on location and duration of surgical procedure, amount of tissue trauma, ambient temp, room ventilation.

- Superficial surgical trauma: 1-2 ml/kg/hr
- Minimal surgical trauma: 3-4 ml/kg/hr
 - Head and neck. hernia, knee surgery
- Moderate surgical trauma: 5-6 ml/kg/hr
 - Hysterectomy, chest surgery
- Severe surgical trauma: 8-10 ml/kg/hr (or more)
 - AAA repair, nephrectomy

4. Blood loss

- Each 1cc of blood loss is replaced by 3cc of crystalloid
- When using blood products or colloids, replace volume per volume

5. Other

- Ongoing fluid losses from other sites (e.g. gastric drainage, ostomy output, diarrhoea)
- Replace volume per volume with crystalloid solutions

Example

- 62 y/o male, 70 kg, for laparotomy bowel resection (hemicolectomy)
- NPO after 2200, surgery at 0800, received bowel prep
- 3 hr procedure, 500 cc blood loss

What are his estimated intraoperative fluid requirements?

- Maintenance: 110 x 3hrs = 330 mL
 - Using "4-2-1 Rule": (4x10) + (2x10) + (1x50) = 110mL/hr
- Fluid deficit
 - NPO deficit: 110 x 10hrs = 1100mL
 - Bowel prep: 1000mL
 - o Total deficit: 2100mL
- Third space losses: 6mL/kg/hr x 3hrs = 1260mL
- Blood loss: 500mL x 3 = 1500mL
- Total: 330 + 2100 + 1260 + 1500 = 5190mL

FLUID MANAGEMENT FACTSHEET

Intravenous fluids

Crystalloids

Combination of water and electrolytes

Normal saline

- Isotonic
- Composition: Na 154, Cl 154
- Osmolarity: 304 mOsm/L
- Disadvantages: hyperchloremic acidosis

Dextrose 5% water

- Composition: 50g/L
- Osmolality: 253 mOsm/L
- Disadvantages:
 - Enhance CO2 production
 - Aggravate ischemic brain injury

Lactated Ringer's solution

- Balanced salt solution
- Composition: Na 130, Cl 109, K 4, Ca 3, lactate 28
- Osmolarity: 273 mOsm/L
- Minor advantage over NaCl
- Disadvantages:
 - Not to be used as diluent for blood (Ca citrate)
 - Low osmolarity can lead to high ICP
 - Caution in kidney failure, brain injury, high blood sugar

Hypertonic solutions

- Fluids containing sodium conc. greater than normal saline
- Available in 1/8%, 2.7%, 3%, 5%, 7.5%, 10% solutions
- Advantage:
 - o Small volume for resuscitation
 - Osmotic effect
 - o Inotropic effect (increase Ca influx in sarcolemma)
 - o Increase MAP, CO
 - o Increase renal, mesenteric, splanchnic, coronary blood flow
- Disadvantages
 - Increase hemorrhage from open vessels
 - Hypernatremia
 - Hyperchloremia
 - Metabolic acidosis

Colloids

Fluids
containing
molecules
sufficiently
large enough
to prevent
transfer
across
capillary
membranes

Solutions stay in the space into which they are infused (remain intravascular)

Examples

- Dextran
- Gelatins
- Albumin
- Hetastarch 6%
- Pentastarch 10%
- Tetrastarch (voluven)

	Crystalloid	Colloid
Intravascular persistence	Poor	Good
Hemodynamic stabilization	Transient	Prolonged
Required infusion volume	Large	Moderate
Risk of tissue edema	Obvious	Insignificant
Enhancement of capillary	Poor	Good
Risk of anaphylaxis	-	Low to moderate
Colloid oncotic pressure	Reduced	Maintained
Cost	Inexpensive	More expensive

<u>Advantages</u>

- Prolonged plasma volume support
- Moderate volume needed
- Minimal risk of tissue oedema
- Enhances microvascular flow

Disadvantages

- Risk of volume overload
- Adverse effect on hemostasis
- Adverse effect on renal function
- Anaphylactic reaction
- Expensive

FLUID MANAGEMENT FACTSHEET

Transfusion therapy

- Responsibility of transfusing perioperatively is with the anesthesiologist
- Up to 30% of blood volume can be treated with crystalloids. If blood loss >20% of blood volume and there is still on-going bleeding, this will necessitate blood transfusion

When is transfusion necessary?

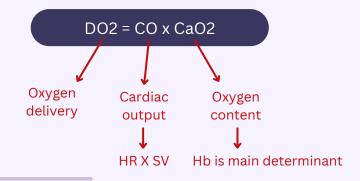
- Transfusion trigger (Hb level at which transfusion should be given) varies with patients and procedures
- Tolerance of acute anaemia depends on:
 - o Maintenance of intravascular volume
 - Ability to increase cardiac output
 - Increases in 2,3-DPG to deliver more of the carried O2 to tissues

Blood groups

	Group A	Group B	Group AB	Group O
Red blood cell type		В	AB	0
Antibodies in plasma	Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens in red blood cell	• A antigen	† B antigen	A and B antigens	None

Cross match

	Donor's		Recipient's
Major cross match	Red cells	mixed with	Plasma
Minor cross match	Plasma		Red cells


Agglutination occurs if either is incompatible

Type and screen

- Determination of the ABO and Rh grouping and screening for unexpected red cell antibodies
- Used when usage of blood is unlikely but needs to be available (e.g. hysterectomy)

Transfusion complications

- Hemolytic reactions
- Febrile reactions
- Allergic reactions
- TRALI
- Coagulopathy with massive transfusions
- Infection

- If HR or SV are unable to compensate, Hb is the major determinant factor in O2 delivery
- Healthy patients have excellent compensatory mechanisms and can tolerate Hb levels of 7 g/dL
- Compromised patients may require Hb levels > 10 g/dL

Blood components

- Whole blood
 - Massive blood loss / trauma
 - Exchange transfusion
- Packed red blood cells
- Platelets
 - o Thrombocytopenia, Plt <15 000
 - Bleeding and Plt <50,000
- Fresh frozen plasma (contains all clotting factors)
 - Coagulation factor deficiency
 - o Fibrinogen replacment
 - o DIC
 - Liver disease
 - o Exchange transfusion
 - Massive transfusion
- Cryoprecipitate (contains factor VIII & fibrinogen)
- Factor VIII
- Albumin
- Others: antibody concentrate, plasma protein fraction

